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Abstract

We describe the relation between simple logarithmic CFTs associated with
closed and open strings, and their ‘infinite metric’ limits, corresponding to
the β–γ systems. This relation is studied on the level of the BRST complex:
we show that the consideration of metric as a perturbation leads to a certain
deformation of the algebraic operations of the Lian–Zuckerman type on the
vertex algebra, associated with the β–γ systems. The Maurer–Cartan equations
corresponding to this deformed structure in the quasi-classical approximation
lead to the nonlinear field equations. As an explicit example, we demonstrate
that using this construction, Yang–Mills equations can be derived. This
gives rise to a nontrivial relation between the Courant–Dorfman algebroid
and homotopy algebras emerging from the gauge theory. We also discuss a
possible algebraic approach to the study of beta-functions in sigma-models.

PACS numbers: 11.25.−w, 11.25.Hf, 11.25.Sq, 11.30.Ly

1. Introduction

It is well known that string theory is a tool that allows us to derive the various properties of the
‘target space’ (which is D-dimensional) from the two-dimensional ‘worldsheet’. The theory
of the so-called vertex operator algebras (see e.g. [1]) serves as a mathematical method in the
investigation of the two-dimensional (quantum) world. They also turn out to be helpful in
the relation between the worldsheet and target space. It is worth mentioning recent papers on
the chiral de Rham complex, sheaves of vertex algebras and their applications to pure spinor
superstrings and topological strings (see e.g. [2–5]).

One can ask a question: what is the meaning of the classical field equations from a vertex
operator algebra perspective? In this paper, following the considerations of [17], we try to
solve this conundrum.
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It is known (see e.g. [16]) that the nonlinear equations of the field theory such as the Yang–
Mills (YM) equations originate as Maurer–Cartan equations for certain homotopy algebras.
The string field theory (SFT) [6–8] suggests that these algebras should be reconstructed from
some operations on the two-dimensional worldsheet. However, it is extremely hard to derive
them directly from SFT, since one has to integrate out massive modes (see e.g. [9, 10]).

We show that there is another way, through the homotopy algebras, related to the vertex
operator algebra, which were introduced by Lian and Zuckerman [11]. One can associate a
semi-infinite (BRST) complex to any vertex operator algebra (with the central charge of the
Virasoro algebra equal to 26 [12]) by extending it via the conformal b–c ghost system. This
complex has a natural multiplication, which is homotopy associative and commutative, and
another bilinear operation with ghost number equal to −1. Together, they satisfy the relations
of the homotopy Gerstenhaber algebra. Lian–Zuckerman algebras already proved to be useful:
they determined the algebraic structure on the ground rings of 2D gravity [13] (see also [27]).
But in this case the main interest was in the corresponding BRST cohomology algebra, and
the homotopical nature of the algebra was totally neglected.

In [17] we have shown that applying the Lian–Zuckerman (LZ) operations directly to the
logarithmic operator algebra of the open string (neglecting logarithms) one is able to reproduce
the C∞ algebra of the Yang–Mills theory on the quasi-classical level (neglecting higher order
α′-corrections). However, it seems to be a miraculous coincidence, since the LZ approach
does not work for logarithmic vertex algebras (see e.g. [14, 15]). Here we demonstrate that
actually it is not a coincidence. We show how to embed the BRST complex of the open string
into the deformation of the BRST complex, associated with the corresponding β–γ system.

We explicitly show that the resulting deformed LZ structure reproduces the YM equations
and their symmetries, explaining the results of [17] on the vertex operator algebra level. One
of the immediate important consequences of this approach is a relation between the YM
C∞ algebra and the Courant–Dorfman brackets, which naturally appear in the study of β–γ

systems (see e.g. [22]).
The initial idea about reproducing classical equations allows the following extension. It

is well known that the beta-function of nonlinear sigma-models reproduces classical equations
at the first order in α′. However, the whole expression for the beta-function (all α′-corrections)
is not yet known. Moreover, it is not unique, because it depends on the regularization
scheme. The original idea of algebraization of beta-functions in 2D from the perspective
of the deformation of the BRST operator goes back to classical papers from 1980s (see e.g.
[18]). This is, however, precisely what the Lian–Zuckerman operations do. If one extends
further the corresponding homotopy algebra to the so-called G∞-algebra [19, 20], one can
interpret the right-hand side of the corresponding Maurer–Cartan equation as an algebraic
definition of the beta-function. This gives a promising approach to derive all the α′-corrections.

The paper is organized as follows. In section 2, we recall basic facts about the LZ
homotopy Gerstenhaber algebra and explain its relation to the perturbed 2D CFTs. In section 3,
we use these constructions in order to obtain the BRST operator in logarithmic theories
associated with open and closed strings as a deformation of the BRST operator for the certain
(β–γ ) first-order theory, which can be described without logarithms i.e. via the vertex operator
algebra. In particular, for the open string this leads to big advantages: it is possible to isolate
light modes as a BRST subcomplex and to apply the Lian–Zuckerman construction to this
subcomplex only, neglecting massive modes.

In section 4, we study a semiclassical approximation to the Maurer–Cartan equation
associated with the homotopy associative algebra (which is a subalgebra of the LZ homotopy
Gerstenhaber algebra). It appears that in the case of the open string reformulated via the β–γ

system it leads to the YM equation, confirming the ‘surprising’ results of [17], where we
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applied the LZ operations directly to the case of the logarithmic CFT of the open string. In
section 5, we outline further developments.

2. Deformation of charges via the Lian–Zuckerman operations

In this section, we give necessary facts about the Lian–Zuckerman operations [11], although
from a different insight, which we need in our approach.

2.1. Reminder of the Lian–Zuckerman homotopy algebras

Let us consider some chiral algebra V. Let T (z) denote the appropriate Virasoro element. Let
�∗ denote the space of states of the conformal b–c ghost system. Then one can define an
operator Q acting on the semi-infinite complex C∗ = V ⊗ �∗:

Q =
∮

dz(c(z)T (z)+ : bc∂c(z) :). (1)

This operator is known as the BRST operator associated with the chiral algebra V. It is well
known that Q is nilpotent on C∗ when the central charge of the Virasoro algebra associated
with T (z) is equal to 26.

Let a(z) be a vertex operator associated with the state a. Then one can define the following
bilinear operation on the corresponding space of states:

μ(a1, a2) = P0a1(ε)a2, (2)

where P0 is the projection on ε-independent part (the right-hand side is considered as a
power series in ε). It was shown [11] that this bilinear operation is homotopy commutative
and associative with respect to the operator Q, namely the bilinear operation μ satisfies the
following relations:

Qμ(a1, a2) = μ(Qa1, a2) + (−1)|a1|μ(a1,Qa2),

μ(a1, a2) − (−1)|a1||a2|μ(a2, a1) = Qm(a1, a2) + m(Qa1, a2) + (−1)|a1|m(a1,Qa2),

μ(μ(a1, a2), a3) − μ(a1, μ(a2, a3))

= Qn(a1, a2, a3) + n(Qa1, a2, a3) + (−1)|a1|n(a1,Qa2, a3)

+ (−1)|a1|+|a2|n(a1, a2,Qa3), (3)

where

m(a1, a2) =
∑
i�0

(−1)i

i + 1
ReswResz−w(z − w)iw−i−1b−1(a1(z − w)a2)(w)1,

n(a1, a2, a3) =
∑
i�0

1

i + 1
ReszReswwiz−i−1(b−1a1)(z)a2(w)a3

+ (−1)|a1||a2|
∑
i�0

1

i + 1
ReswReszz

iw−i−1(b−1a2)(w)a1(z)a3. (4)

Thus, when Q is nilpotent, on the level of cohomology with respect to the operator Q, this
algebra turns out to be commutative and associative. However, originally on the BRST
complex, this operation is only homotopy associative.

One is able to define another useful bilinear operation:

{a1, a2} = (−1)|a1|

2π i

∮
dz(b−1a1)(z)a2 (5)

3
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which, together with operation μ, satisfies the relations of the homotopy Gerstenhaber algebra:

{a1, a2} + (−1)(|a1|−1)(|a2|−1){a2, a1}
= (−1)|a1|−1(Qm′(a1, a2) − m′(Qa1, a2) − (−1)|a2|m′(a1,Qa2)), (6)

{a1, μ(a2, a3)} = μ({a1, a2}, a3) + (−1)(|a1|−1)||a2|μ(a2, {a1, a3}){μ(a1, a2), a3}
− μ(a1, {a2, a3}) − (−1)(|a3|−1)|a2|μ({a1, a3}, a2)

= (−1)|a1|+|a2|−1(Qn′(a1, a2, a3) − n′(Qa1, a2, a3)

− (−1)|a1|n′(a1,Qa2, a3) − (−1)|a1|+|a2|n′(a1, a2,Qa3),

{{a1, a2}, a3} − {a1, {a2, a3}} + (−1)(|a1|−1)(|a2|−1){a1, {a2, a3}} = 0. (7)

The ‘homotopies’ m′, n′ are constructed by means of μ and n. In this paper, we need no
explicit expressions for them.

2.2. Generalization of the LZ construction and deformed BRST charges

Let us consider a CFT, which includes both chiral and antichiral parts, i.e. the space of states
will be of the form C∗ = C∗ ⊗ C̄∗, where C̄∗ corresponds to the antichiral part. One can
define the total BRST charge

Q = Q + Q̄ =
∮

(dz(c(z)T (z)+ : c∂cb(z) :) − dz̄(c̃(z̄)T̃ (z̄)+ : c̃∂̄ c̃b̃(z̄) :)). (8)

One can generalize both operations (2) and (5) in such a way that they will satisfy the
Gerstenhaber algebra up to homotopy with respect to Q.

The expression for μ is as before: μ(A1, A2) = P0A1(ε)A2, where ε /∈ R, and P0

is a projection on ε-independent part. In order to give an expression for a generalization
of homotopy Gerstenhaber bracket we introduce the following notation. Let us associate
the following 0-, 1- and 2-forms corresponding to the state A ∈ C∗: A(0) ≡ A,A(1) =
dz b−1A− dz̄ b̃−1A,A(2) = dz∧ dz̄ b−1b̃−1A

(0), where b−1 and b̃−1 are the appropriate modes
of the chiral and antichiral b-ghost field correspondingly. If A is the primary state of conformal
weight (1, 1), then we have a hierarchy of descent equations: QA(0) = 0,QA(1) = dA(0),

QA(2) = dA(1). The expression for the analog of the Gerstenhaber bracket in the case of C∗

is, therefore (see also [21–23])

{A1, A2} = (−1)|A1|

2π i
P0

∫
Cε

A(1)(z)A2, (9)

where Cε is a circle contour of radius ε around the origin and P0 is the projection on the
ε-independent term, if one represents the right-hand side as a power series in ε. Actually, one
can write Ai = ∑

α aα
i ⊗ āα

i (i = 1, 2) where aα
i ∈ C∗, āα

i ∈ C̄∗. Then

{A1, A2} =
∑
α,β

(−1)|a
β

2 ||āα
1 |{aα

1 , a
β

2

}
μ

(
āα

1 , ā
β

2

)
+ (−1)|a

α
1 |+|aβ

2 |+|aβ

2 ||āα
1 |μ

(
aα

1 , a
β

2

){
āα

1 , ā
β

2

}
. (10)

One of the applications of the introduced operation is as follows. Suppose one has a CFT
with the space of states C∗. Let us perturb this CFT by a primary field A(z) of conformal
weight (1, 1). This corresponds to the perturbation of an action of the form 1

2π i

∫
φ(2), where

φ(2) = dz∧dz̄ A(z). Then, on the classical level, the conserved charge in this theory should be
of the form Q+ 1

2π i

∮
A(1). On the quantum level, in order to define the action of the deformed

charge on the states of original theory, one has to define precisely the action of the integrated
operator-valued 1-form. A natural choice will be Q + 1

2π i

∫
Cε

A(1). Unfortunately, we are not
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able to eliminate ε-dependence by letting ε → 0, because of possible singularities. So one
has to regularize it somehow. A natural choice is to take a projection P0, on ε-independent
term. Therefore, the classical version of the deformed current on the quantum level will act
as follows:

B → QB + {A,B}, (11)

where B ∈ C∗. We have to say that there might be further corrections to the deformed charge,
involving the operations of higher order in A. We claim that those contributions should also
be governed by the Lian–Zuckerman formalism. We discuss it in the last part of this paper. In
the following section, we study simple perturbations, where formula (11) is just enough.

3. BRST, logarithmic CFTs of the string theory and their ‘infinite metric’ limits

3.1. The closed string via β–γ systems

Let us consider the CFT with the action

Sβ,γ = 1

2π

∫
d2z(βi ∂̄γ i + βī∂γ ī), (12)

where i, ī = (1, . . . , D/2). Let us perturb it by means of the operator φ(2)
g = 1

2πi
dz ∧

dz̄ gij̄ βiβj̄ , where gij̄ is some flat metric. The resulting action is

S
g

β,γ = 1

2π

∫
d2z βi ∂̄γ i + βī∂γ ī − gij̄ βiβj̄ ). (13)

After a simple Gaussian integration over β-variables, and redenoting γ as X, one obtains a
theory with the action

Sclosed = 1

2π

∫
d2z gij̄ ∂Xi ∂̄Xj̄ , (14)

where gij̄ is the inverse matrix for gij̄ . Here we change the notations from γ i to Xi, since
the operator meaning of γ - and X-variables is different. According to the considerations of
section 2, the deformed BRST charge is of the form

Q · +{Ag, ·}, where Ag(z) = c̄cgij̄ , βiβj̄ (15)

and Q is given by formula (8), where T = − : βi∂γ i : and T̃ = − : βī ∂̄γ ī . One can rewrite
this operator in the following way:

Qg = Q − 1

2π i

∮
dz

z
gij̄ cβi(z)β0,j̄ +

1

2π i

∮
dz̄

z̄
gij̄ c̄β0,iβj̄ , (16)

where β0,i and β0,j̄ are the 0-modes of the corresponding conformal fields. One can check
on the operator level that this operator coincides with the operator QX, which is the BRST
operator of the theory (14), i.e. QX is expressed as in (8), where T = −gij̄ ∂Xi∂Xj̄ and
T̃ = −gij̄ ∂̄Xi ∂̄Xj̄ , if we make the identification:

∂Xj̄ = βig
ij̄ , ∂̄Xi = βj̄g

ij̄ ,

∂Xi = ∂γ i +
β0,j̄ g

ij̄

z
, ∂̄Xj̄ = ∂̄γ j̄ +

β0,ig
ij̄

z̄
.

(17)

Thus, in this case, formula (11) for the deformation of the BRST charge is exact and does not
need to be improved by further corrections involving polylinear operations.

5
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3.2. The open string via β–γ systems

In the case of the open string moving in D dimensions, we consider a β–γ system of the
following type. Let pμ and Xμ (μ = 1, . . . , D) be the fields of conformal dimension 1 and 0
correspondingly. Their operator product is

Xν(z)pμ(w) ∼ δν
μ

z − w
, (18)

corresponding to the action

Sp,X = 1

2π

∫
d2z pμ∂̄Xμ. (19)

Now we introduce an operator-valued 1-form φ(1) = 1
2 (dz c(z̄)ημνpμ(z)pμ(z̄) −

dz̄ c(z)ημνpμ(z)pμ(z̄)), where ημν is a constant Minkowski or Euclidean metric. Let us
construct the following operator, which is a deformation of the BRST charge:

Qη = QX,p +
1

2π i
P0

∫
Cε

φ(1)
η , (20)

where QX,p = ∮
(−cpμ∂Xμ+ : bc∂c :) is a BRST operator associated with X–p theory.

Counting the ε-powers, one can find that this operator is

Qη = QX,p − 1

2π i

∮
dz

z
ημνcpμ(z)p0,ν , (21)

where p0,μ is the zeroth mode of the pμ(z). On the language of the LZ operations it can be
expressed by

Qη = QX,p + ηαβμ(aα, {aβ, ·}), (22)

where aμ = cpμ . From here, it is clear that if the central charge of X–p theory is equal to 26,
Qη is nilpotent. Now, we show the relation of the operator above to the open string theory in
dimension D. As before, we just need to compare the modes of appropriate fields. Namely,

pμ(z) =
∑

n

pn,μz−n−1, Xν(z) =
∑

n

Xν
nz

−n,
[
Xμ

m, pn,ν

] = δm,−nδ
μ
ν . (23)

Introducing the operators a
μ
n ≡ (

√
2)−1

(
nX

μ
n + ημνpν,n

)
, ā

μ
n ≡ (

√
2)−1

(
nX

μ
n − ημνpν,n

)
,

(such that n �= 0) one obtains that they form two commuting Heisenberg algebras:[
aμ

n , aν
m

] = nδn,−mημν,
[
āμ

n , āν
m

] = −nδn,−mημν,
[
aμ

m, āν
n

] = 0. (24)

Using this notation, the operator Qη can be represented as follows:

Qη =
∮

(−cηνμ∂Xν∂Xμ + cT̄ + c∂cb), (25)

where

Xμ(z, z̄) = X
μ

0 − ημνp0,ν ln|z|2 − 1

i
√

2

∑
m,m�=0

a
μ
m

m
(z−m + z̄−m) (26)

is the conformal field describing the open string on a half-plane and T̄ depends on ām only.
Therefore, if F is a map eliminating all states generated by ām, then we have the following
expression:

FQη = QXF, (27)

6
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which means that F is a chain map between the BRST differentials Qη and QX.1 Let us
consider the following action on the half-plane H+:

S
η

p,X = 1

2π

∫
H+

d2z(pμ∂̄Xμ + p̄μ∂X̄μ − ημνpμp̄ν) (28)

such that the boundary conditions for the fields are pμ(t) = p̄μ(t) and Xν(t) = X̄ν(t), where
t ∈ R. The third term in the action is a perturbing term. Hence, one obtains that the perturbed
BRST operator (20) corresponds to the BRST operator of the theory described by the action
above.

As we see, the consideration of the semi-infinite complex with the differential Qη on the
space of the X–p model has one big advantage: we get rid of logarithms, i.e. X–p theory is a
vertex algebra, and make the open string on a half-plane pure chiral. The disadvantage lies in
the fact that the space of states of the X–p theory is twice bigger than that of the X theory and,
thinking about physical states, there will be additional auxiliary modes.

4. The Yang–Mills equations via the Lian–Zuckerman homotopy algebra

4.1. Light modes and the Maxwell equations

In section 3.2, we have considered the X–p version of the open string and defined the deformed
BRST operator

Qη = QX,p + ηαβμ(aα{aβ, ·}), (29)

where aμ = cpμ, on the semi-infinite complex. Let us consider a subcomplex of the semi-
infinite complex, which corresponds to the states of conformal dimension 0, i.e. these are the
states annihilated by the operator L0 = [QX,p, b0]. These states can be explicitly written
down. They correspond to the operators in the chiral algebra of the following form:

ρu = u(X), φ′
A = cAμ(X)∂Xμ, φ′′

B = c : Bμ(X)pμ :,

φa = ∂ca(X), ψ ′
V = c∂cVμ(X)∂Xμ, ψ ′′

W = c∂c : Wμ(X)pμ :,

ψb = c∂2cb(X), χv = c∂c∂2cv(X),

(30)

where A, V are the elements of the cotangent bundle and B, W are the elements of tangent
bundle. When we write the dependence of Xμ in the fields, involved in the operators above,
like a(X) or Aμ(X), one can assume that they are formal power series in Xμ: they are still the
elements of the X–p vertex operator algebra, as it was shown in [2]. In the following, we will
refer to the states (30) as light modes and denote the corresponding BRST subcomplex as C∗

L0
.

Now let us consider the action of an operator Qη on the BRST subcomplex of light modes.
It is clear that Qη commutes with L0, therefore the subcomplex of light modes is invariant
under its action. Moreover, both QX,p and Qη are nilpotent on C∗

L0
. Let us calculate the first

cohomology group with respect to Qη on C∗
L0

Qη(φ′
A + φ′′

B − φa) = ψ ′
�A + ψ ′′

�B + 1
2ψ∂μBμ+ημν∂μAν

− ψa − ψ ′
da − ψ ′′

da∗ ,

Qηρu = φ′
du + φ′′

du∗ − φ�u,
(31)

1 We note here that since the central charges of the Virasoro algebras are different for the X–p theory (c = 2D) and
the open string (c = D), the differentials Qη and QX cannot be nilpotent at the same time on the whole space of the
BRST complex. However, later we will reduce both differentials to the certain subcomplexes, where both of them
are nilpotent.

7
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where (du∗)μ = ημν∂νu and � ≡ ημν∂μ∂ν . Therefore, we have the following equations which
determine a cycle:

�Aν − 1
2∂ν(∂μBμ + ημλ∂μAλ) = 0,

�Bμ − 1
2ημλ∂λ(∂νB

ν + ηρν∂ρAν) = 0,

a = ∂μBμ + ημν∂μAν,

(32)

which means that the 1-form (Aμ + ημνB
ν)dXμ satisfies the Maxwell equations and the

fields �μ = ημνAν − Bμ are massless scalar fields. Therefore, H 1(C∗
L0

) consists of 1-forms
satisfying the Maxwell equations modulo gauge transformations and D massless scalar fields.
However, from the considerations of section 3.2., one can deduce that the map F eliminates
those scalar fields: they correspond to the system of auxiliary modes we obtained when
considered the open string in the X–p form.

Studying the action of Qη in detail, one can obtain that the complex of light modes is
isomorphic to the one, which splits into the following subcomplexes:

�i denotes the i-forms on the D-dimensional space, where the symbol ∗ means a Hodge star
with respect to the metric η. Evidently, after the action of the map F only the upper complex
survives. This upper complex is known as the detour complex and was a starting point to
build the A∞/L∞ structure of the gauge theory [16, 17].

4.2. Deformation of the LZ structure and the Maurer–Cartan equations

From the explicit expressions of μ-, m-, and n -operations, one can see that they leave the
complex C∗

L0
invariant. So, from now on we restrict the LZ operations to light modes. From

the previous subsection we already know that the deformed BRST operator Qη gives rise to
the Maxwell equations. We want to find out whether it is possible to deduce the Yang–Mills
equations via the Lian–Zuckerman construction. Since the BRST differential is deformed
according to formula (29), the Lian–Zuckerman operations are not homotopy associative with
respect to Qη. Therefore, one has to redefine (deform) them appropriately, in order to satisfy
relations (3) with Q = Qη.

Let us illustrate such deformation on a simple example. The deformed differential can
be expressed in the following way: Qη = Q + R, where we made a shorthand notation
QX,p ≡ Q. The operation R is not a derivation for the operation μ. However, it is a
derivation up to Q-homotopy, since R = ηαβμ(cpα, {cpβ, ·}) and {cpμ, ·} is just an action of
the p0,μ-mode:

Rμ(a1, a2) − μ(Ra1, a2) − (−1)|a1|μ(a1, Ra2)

= Qνη(a1, a2) − νη(Qa1, a2) − (−1)|a1|νη(a1,Qa2), (33)

where νη is given by

νη(a1, a2) = ηαβ(n(cpα, p0,βa1, a2) − μ(m(cpα, a1), p0,βa2))). (34)

One can show that the bilinear operation μ should receive the following correction (of the first
order in η) μ → μη = μ−νη. In this section, we will be interested in the quasi-classical limit

8
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of the Maurer–Cartan equation, associated with the η-deformed Lian–Zuckerman homotopy
algebra. It means that one should introduce a parameter h in the X–p operator product:

Xν(z)pμ(w) ∼ hδν
μ

z − w
(35)

and to change the operator Qη → Q
η

h = Qh
X,p + h−1R, where Qh

X,p is the BRST differential
with the rescaled Virasoro element: T = −h−1 : pμ∂Xμ :. It can be shown that the corrections
of higher order in ηαβ lead to higher order powers of h. In the following, we will be interested
in the leading order of powers of h, i.e. the smallest power with nonzero coefficient.

The Maurer–Cartan equation for the deformed LZ homotopy algebra is of the following
form:

Q
η

h� + μ
η

2(�,�) + μ
η

3(�,�,�) + · · · = 0, (36)

where � ∈ C1
L0

[h] ⊗ U(g) (g is some Lie algebra) and μ
η

2 ≡ μη,μ
η

3 ≡ nη are the η-deformed
operations μ, n. Here dots stand for higher order operations in η-deformed Lian–Zuckerman
homotopy associative algebra.

By the quasi-classical limit of the Maurer–Cartan equation we mean that equation (36)
considered on the factor complex C∗

L0
[h]/h2C∗

L0
[h] ⊗ U(g).

So, we are interested in the terms of the first order in h in the left-hand side of (36).
One can show that higher order polylinear operations on C1

L0
[h] ⊗ U(g) in the quasi-classical

limit are equal to zero. Moreover, the higher order η-corrections to the operations m and n
involve higher derivatives and higher h-powers. One can calculate their leading order in h
by the simple analysis of conformal dimensions (which should remain to be 0) and possible
contractions between the p- and X-variables.

Therefore, equation (36) simplifies as follows:

Q
η

h� + μη(�,�) + n(�,�,�) = 0, (37)

where μη = μ − h−1νη. Now, we explicitly show that this equation for the generic value of
� gives rise to the Yang–Mills equations in D-dimensions coupled to D scalar fields.

First, we expand � = φ′
A + φ′′

B − φa . Then let us explicitly write term by term

Q
η

h(φ
′
A + φ′′

B − φa) = hψ ′
�A + hψ ′′

�B +
h

2
ψ∂μBμ+ημν∂μAν

− ψa − ψ ′
da − ψ ′′

da∗ . (38)

Since [Xα
0 , p0,β ] = hδα

β , one can replace p0,β by −h∂β ≡ −h ∂

∂X
β

0

. Hence,

μη(�,�) = μ(�,�) + ηαβ(n(cpα, ∂β�,�) − μ(m(cpα,�), ∂β�)))

= h
(
ψ ′

[ηαβAβ+Bα,∂αA] + ψ ′′
[ηαβAβ+Bα,∂αB] + ψ ′

{A,B}1
+ ψ ′

{A,B}∗1
)

+ ψ ′
[A,a] + ψ ′′

[B,a] +
h

2
ψAμBμ+BμAμ

, (39)

where {A, B}1,α = ηβγ ∂αAβBγ and {A, B}∗α
1 = ηαβ{A, B}1,β . The operation n gives the

following expression:

n(�,�,�) = ψ ′
{A,B}2

+ ψ ′′
{A,B}∗2 , where

{A, B}2,α = ηβγ (Aα(AβBγ + Bγ Aβ) + AβAαBγ + Bγ AαAβ), (40)

{A, B}∗2,α = ηβγ (Bα(AβBγ + Bγ Aβ) + AβBαBγ + Bγ BαAβ).

The first equation we can derive from here shows that a can be expressed in the terms of A-
and B- fields:

a = h

2
(∂μBμ + ημν∂μAν − AμBμ − BμAμ). (41)

9



J. Phys. A: Math. Theor. 42 (2009) 355401 A M Zeitlin

One can see, that we eliminate auxiliary modes, provided by the map F which means that
Bμ = ημνAν . In this case, it can be seen that the equation (37) reduce to the Yang-Mills
equations:

�Aμ − ηαβ∂μ∂αAβ + ηαβ∂α[Aβ,Aμ]

+ ηαβ [Aα, ∂βAμ − ∂μAβ] + ηαβ[Aα, [Aβ,Aμ]] = 0. (42)

In the general case, when Bμ �= ημνAν , we have two types of fields, Aμ = Aμ + ημνB
ν

and �μ = ημνAν − Bμ. One can show that equation (37) leads then to the dimensionally
reduced YM equations from 2D to D such that Aμ and �ν (ν = 1, . . . , D) are the resulting
gauge field and scalar fields. Finally, we note that the gauge symmetries Aμ → Aμ +
ε(∂μu + [Aμ, u]),�μ → �μ, where ε is infinitesimal, can also be reproduced by means of
the symmetries of the Maurer–Cartan equation:

� → � + ε
(
Q

η

hu + μη(�, u) − μη(u,�)
)
. (43)

5. Further development

5.1. An algebraic approach to beta-functions of sigma-models

From what we have seen so far, the LZ homotopy algebras reproduce the classical field
equations at the semi-classical level. What if we go further and take into account all the
h-corrections (or the α′-corrections in the string-theoretic language)? The Maurer–Cartan
equation we obtain has the physical meaning of the conservation law of the deformed
BRST charge, according to the considerations of section 2 (see also [23]). Thus, one can
treat the corresponding Maurer–Cartan equations as the equations of conformal invariance2.
Therefore, the approach we used here gives us a possibility to study beta-functions for the
perturbed conformal field theories (in particular, sigma-models) algebraically. Actually, our
considerations show that in the open string case (when metric is flat) the beta-function vanishing
condition has the form

Qη� + μη(�,�) + · · · = 0, (44)

where � is of ghost number 1 and dots stand for higher polylinear operations. Whereas in the
closed string case the condition of conformal invariance should be (see also [22, 23])

Q� + 1
2 {�,�} + · · · = 0, (45)

where � is of ghost number 2, {·, ·} is the operation (9) and dots stand for higher polylinear
operations. We will return to these equations in [25].

5.2. Strings in the curved and the singular backgrounds

A great advantage of the string theory reformulated in the first-order formalism we introduced
is that we can at once isolate all light modes and work only with them. It does not hold in
standard approach to the string models, since there is no natural operator which can serve such
a projector. For example, this happens in the string field theory [6], where massive modes
couple to light modes and the only way to deduce, say, the field equations for light modes is
to integrate out the massive ones, that is extremely hard to do (see e.g. [9, 10], where this was
done numerically).

2 This is close to the considerations of Sen (see e.g. [24]) in the context of the relation of the SFT and the conditions
of conformal invariance.
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The algebraic approach we considered has another useful feature: it can also be applied
when the corresponding metric is not flat. For the open string first-order model we studied in
section 3, the natural possibility is to consider a perturbation by means of the 2-form associated
with the field of conformal dimension (1, 1) of the following kind:

φ(2)
e,η = 1

2π i
dz ∧ dz̄ ηab : eμ

a (X)eν
b(X̄)pμp̄ν : (z), (46)

i.e. representing the metric by means of orthonormal frames. The associated metric can even
contain a singularity: since in our formulae we use the inverse metric, we might get rid of it.

5.3. The YM C∞ algebra and the Courant algebroid

One of the aims of this paper was to (partly) explain the mystery of the appearance of the YM
C∞ algebra on the quasi-classical level [17], in the original logarithmic open string theory.
In this paper we partly solved this problem, by getting rid of logarithms. We limited our
calculations just to demonstrate that the Maurer–Cartan equation leads to the YM equations,
but in principle, it is not hard to show (the same way we did it in [17]) that our deformed
operations μη and n reproduce, on quasi-classical level, the whole C∞ algebra.

It appears, however, that our approach leads to another interesting observation. Let us
return back to the complex C∗

L0
= C∗

L0
[h]/h2C∗

L0
[h] and let us have a look on the homotopy

Gerstenhaber structure, applied to the elements of C∗
L0

:

{φ′
A + φ′′

B, φ ′̄
A

+ φ′′̄
B
} = h

(
φ′

LBĀ−diB̄A
+ φ′′

[B,B̄]Lie

)
, (47)

where [B, B̄]Lie is just a Lie bracket of the corresponding vector fields and LB is a Lie derivative.
Expression (47) precisely coincides with the Dorfman bracket. So, one of the immediate
consequences of the β–γ approach is the nontrivial relation between the Courant–Dorfman
algebroid and the YM C∞ algebra, which will be studied further in [29].
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